Manage BLOB

Data Fields

ADO.NET and SQL Server let you retrieve random images for display in

your WinForms apps.

Technology Toolbox

© VB.NET

o C#

& SOL Server 2000
[ASP.NET

J XML

1 VB6

¥ Other:
ADO.NET

Go Online!

Use these Locator+ codes at
www.visualstudiomagazine.com
to go directly to these related
resources.

Download

VS0308QA Download the code for
this article, which includes
applications that demonstrate
subclassing with VB.NET and
asynchronous event publishing.

Discuss

VS03080QA_D Discuss this article in
the ADO.NET, VB.NET, and C#
forums.

Read More

VS03080A_T Read this article
online. It includes Listings 2 and 3.

VS0304DE_T “Follow the Top 10
ADO.NET Tips” by Dino Espaosito

VS0206BS_T “Subclass Controls in
.NET" by Bill Storage

VS0204JL_T “Tame .NET Events” by

Juval Lowy

56

by Fabio Claudio Ferracchiati and Juval Lowy

¢ Manage BLOB Data
Fields
I need to develop an application that displays
random images stored ina Microsoft SQL Server
database in a picture box. Is there an easy way to
accomplish this functionality?

A:

Yes. ADO.NET and SQL Server give you all the
tools for retrieving binary large objects (BLOBs)
easily from a darabase. You can use a simple
application I created as a model for implement-
ing dynamic image changing in a WinForms
form. Start by examining the database structure:

CREATE TABLE [dbo].[T_Image] (
[ImagelD] [int] IDENTITY (1, 1)
NOT WULL , [ImageBinary] [image] NOT
NULL J ON [PRIMARY] TEXTIMAGE_ON
[PRIMARY]

The table has two columns—an image iden-
tifier as primary key, and the image’s binary
code. As you can see, SQL Server provides an
image data type that’s useful for managing im-
ages within a database. This stored procedure
retrieves the binary image data and provides an
image identifier:

CREATE PROCEDURE dbo.Retrievelmage
@id int

AS

SELECT ImageBinary FROM T_Image

WHERE Imageld = @id

This stored procedure inserts a new image
into the database:

CREATE PROCEDURE dbo.InsertImage
@i image

VISUAL STUDIO MAGAZINE + AUGUST 2003

AS
INSERT INTO T_Image (ImageBinary)
VALUES (@1)

The code to execute a stored procedure is
simple, thanks to the ADO.NET classes. You
call the InsertImage stored procedure, which
provides binary code from an image file (see
Listing 1).

Calling a stored procedure from the code
takes six steps. First, create a SqlConnection
object that specifies the connection string of the
database to connect. Second, create a Sql-
Command object; use the new object to specify
the StoredProcedure command type and the
CommandTextwith the stored procedure name.
Third, add a new Parameters collection item for
each stored procedure parameter. Fourth, open
the connection to the database. Fifth, use either

' ImageDB

ko1 .z R
v A KR
fdl e e ¢

PROTESSIONAL

ACHIVE Server

Pages 3.0

Figure 1 Retrieve an Image. You can retrieve an
image from the database and assign it to a pic-
ture box. You change the image by passing the
new image's identifier to the stored procedure.

« www.visualstudiomagazine.com

& VB.NET ¢ Add an Image : ' P _\

Try
Dim dbConn As New SqlConnection()
dbCann.ConnectionString = “. i

Dim dbComm As New SqlCommand()

dbComm.CommandText = "[InsertImage]"

dbComm, CommandType = StoredProcedure

dbComm.Cannection = dhCann

dbComm.Parameters.Add{New _
SqlParameter("@id", _
Sq10bType.Int, 4, _
ParameterDirection.Input, _
False, CType(10, Byte), _
CType(0, Byte), "", _
DataRowVersion.Current, _
Nothing))

dbConn.Open()

Dim fs As FileStream

fs = File.OpenRead(<filemame>)
Dim buffer(fs.Length) As Byte

fs.Read(buffer, 0, fs.Length)

dbComm.Parameters("@i").Value = _
buffer
dbComm. ExecuteNonQuery()

Catch ex As Exception
MessageBox.Show(ex.Message)
Finally
I (dbConn.State = _
ConnectionState.Open) Then
dbConn.Close({)
End ILf
End Try

Listing 1 This code calls the Insertimage stored procedure in the SQL Server database to add an image as a binary large object (BLOB) item.
When you use ADO.NET to call a stored procedure, you must specify each of its parameters in the Parameters collection. Finally, you must
provide the values to insert in the database and call the ExecuteNonQuery method.

the ExecuteNonQuery method to execute a stored procedure that
doesn’t return a value, or the ExecuteReader method to execute a
stored procedure that returns a reference to the DataReader object.
Finally, close the connection.

As you can see in Listing 1, the FileStream object reads the
contents of the image file. You create a Byte buffer for containing
the image content, then pass it to the stored procedure you’ll insert
into the database.

You must execute the Retrievelmage stored procedure in order
to retrieve an image from the database and provide the image
identifier of the image you want to retrieve:

Try
dbConn.0pen()
dbComm.Parameters("@id").Value = _
<imageid>
Dim buffer() As Byte
buffer = dbComm.ExecuteScalar()}
Dim s As New MemoryStream(buffer)
s.Write(buffer, 0, buffer.Length)
pbImageDB.Image = _
Image.FromStream(s)
Catch ex As Exception
MessageBox.Show(ex.Message)
Finally
If (dbConn.State = _
ConnectionState.Open) Then
dbConn.Close()
End If
End Try

After the connection to the database is open, you can provide the
image’s identifier dynamically to retrieve the image from the
database (see Figure 1). The SqlCommand class’s ExecuteScalar
method executes the SQL instruction in order to retrieve only the
command’s first parameter, This is useful when you exccute a SQL
command that returns only a value (for example, a newly inserted
record’s identifier or a specific image’s bytes). Now that the buffer

AUGUST 2003 + www.visualstudiomagazi

contains the stored procedure’s result, the code usesa MemoryStream
object to fill 2 memory space with the image bytes. This step is
necessary because the Image class doesn’t provide a method that
reads image bytes. The Image class accepts either a filename or a
handle to the bitmap, except for a Stream object. So, you change the
picture box image dynamically by setting its Image object reference
with the new Image object filled with the image bytes stored in a
MemoryStream object. —F.C.F.

« Implement Subclassing in
WinForms Forms

My application is basically a series of forms. Any number of the
form’s instances can be open at any time. I need to detect when
another application has taken the focus through either mouse clicks
or keystrokes, such as Alt+Tab. Is there an easy way to produce this
effect? T want my program to shut itself down if another application
takes focus.

A:

A WinForms form in the .NET Framework is subjected to the
Activated event when the user selects it with either the mouse or
keystrokes. However, this isn’t a good event for your application,
because it’s raised when the form in a single document interface
(SDI) application, or a child form in a multiple document interface
(MDI) application, is activated—not when the application gets the
focus from another application. Your only solution is to subclass the
form (download the sample code from the VSM Web site; see the Go
Online box for details).

Subelassing is an advanced technique for implementing non-
standard Windows controls and features. I used it for the first time
to create a listview control that displaysa different color in each row.
Subclassing lets you retrieve Windows system messages and change
default behavior against these messages. Implementing subclassing
in VB.NET issimple. You can override the Control class’s WndProc

methods directly in your form’s code.

Protected Overrides Sub WndProc(_

com 57

VISUAL STUDIO MAGAZINE «

ByRef m As Message)

MyBase.WndProcim)

The first instruction you add within the method is the call to the
base class’s method. The Message parameter contains the Msg
property, which indicates the Windows system message that the
system fires. You can use a Select Case in the WndProc method to
manage these messages, and you can find definitions of the mes-
sages’ values in the Windows.h header file.

Your application must use the WM _ACTIVEAPP message that
the OS fires when the user selects your application with either a
mouse click or a keystroke. The WM_ACTIVEAPP Windows
message fires with the word param set to zero when your application
becomes inactive. You can check this value in order to close the
application:

Select Case m.Msg
Case WM_ACTIVATEAPP
If m.WParam.TolInt32 = 0 Then
Application.Exit()
End If
End Select

You force the application to quit by calling the shared Exit method
that the Application class provides. —F.C.F.

¢ Automate Asynchronous Event
Publishing
You show how to publish events asynchronously in your “Tame
NET Events” article (VSM April 2002; see the Go Online box). 1
need to publish many event types asynchronously. Is there a way to
automate the process instead of duplicating the code for every
publisher and delegate?

A:

The technique I demonstrated in that article addresses the problem
of publishing events asynchronously. .NET lets you use the
Beginlnvoke() delegate method to invoke the delegate target asyn-
chronously on a thread from the thread pool. The only limitation
to using BeginInvoke() is that the delegate must have only a single
target in it; otherwise, an exception is thrown. Although it’s normal
to have a single target when you use a delegate dedicated to
asynchronous invocation, you usually end up with multiple sub-
scribers to events. The previous article’s solution was to iterate
manually over the delegate’s internal invocation list and publish to
every delegate in that list asynchronously (download Listing 2).

The problem with Listing 2’s code is that it isn’t generic, and
you must repeat such code in every case in which you want to
publish events asynchronously. Fortunately, you can write a generic
helper class to automate asynchronous event publishing (down-
load Listing 3 and the sample code).

You use the param modifier to pass in any collection of argu-
ments, as well as the delegate containing the subscribers list. The
FireAsync() method iterates over the internal collection of the
passed-in delegate. For each delegate in the list, it uses another
delegate of type AsyncFire to call the private helper method Invoke-

58 VISUAL STUDIO MAGAZINE «

Delegate() asynchronously. InvokeDelegate() simply uses the Del-
egate type’s Dynamiclnvoke() method to invoke the delegate.

Using EventsHelper to publish events asynchronously is easy,
compared to Listing 2:

public delegate void
NumberChangedEvent(int numl;

public class MySource
|
public event NumberChangedEvent
NumberChanged;

public void FireEventAsync(int num)

{

EventsHelper.FireAsyncl
NumberChanged, num) ;

You also decorate EventsHelper’s InvokeDelegate method with
the OneWay attribute, which is defined in the System.Runtime.-
Remoting. Messaging namespace. .NET doesn’t keep track of the
method invocation when it invokes a one-way method asynchro-
nously, and it doesn’t manage any completion callbacks or record
exceptions. Asa result, dispatching the call asynchronously involves
no overhead. One-way methods mean semantically that the caller
shouldn’t care what happens after calling the methods. This is
clearly the case with FireAsync(), because the EventsHelper's client
doesn’t care about the result of publishing the event asynchronously

to all the subscribers. —/.L.

Fabio Claudio Ferracchiati has 10 years of experience using Microsoft
technologies. He's been focusing attention recently on the new .NET
Framework architecture and languages and has written books for
Wrox Press about this technology. He works in Rome for the CPI
Progetti SpA company (www.cpiprogetti.itl. Contact him by e-mail at
ferracchiati@rocketmail.com.

Juval Léwy is a software architect and the principal of |Design, a
consulting and training company focused on .NET design and .NET
migration. Juval is Microsoft's regional director for the Silicon Valley,
working with Microsoft on helping the industry adopt .NET. His portion
of this article derives from his latest book, Programming .NET Compo-
nents (O'Reilly & Associates). Juval speaks frequently at software-
development conferences. Contact him at www.idesign.net.

Additional Resources

» Professional ADO.NET by Fabio Claudio Ferracchiati et al.
[Wrox Press, 2001, ISBN: 186100527X]

» Programming Microsoft Visual Basic .NET (Core Reference)
by Francesco Balena [Microsoft Press, 2002, ISBN:
0735613753] i

» Programming .NET Components by Juval Léwy [0'Reilly &
Assaciates, 2003, ISBN: 0596003471]

AUGUST 2003 + www.visualstudiomagazine.com

	Visual Studio Aug 03 VOL 13 NO 9 Page 1.pdf (p.1)
	Visual Studio Aug 03 VOL 13 NO 9 Page 2.pdf (p.2)
	Visual Studio Aug 03 VOL 13 NO 9 Page 3.pdf (p.3)

